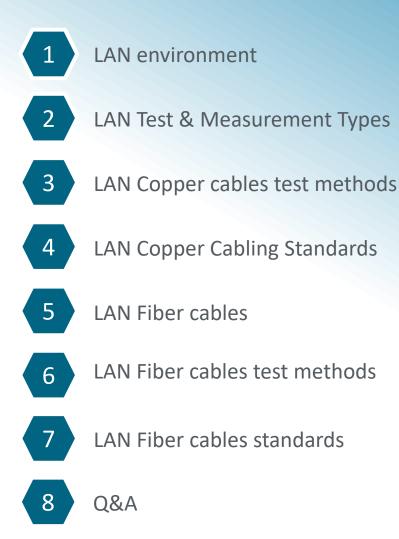

Fiber Fiber OTDR 5000



LAN Networks – Cable Testing best practice

LAN environment

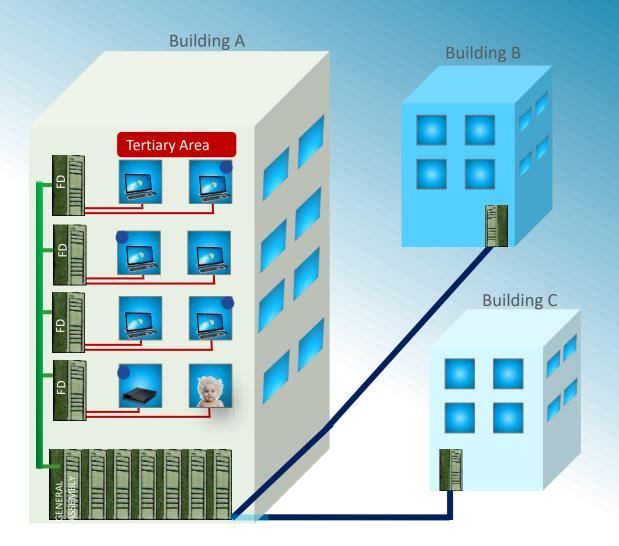
Tertiary

Horizontal cabling, Floor cabling Preferably implemented in Copper (*Twisted Pair*) Version with or without consolidation point

Secondary

Backbone, Riser Area, Vertical cabling Preferably implemented in FO (<u>Multimode</u>/Singlemode)

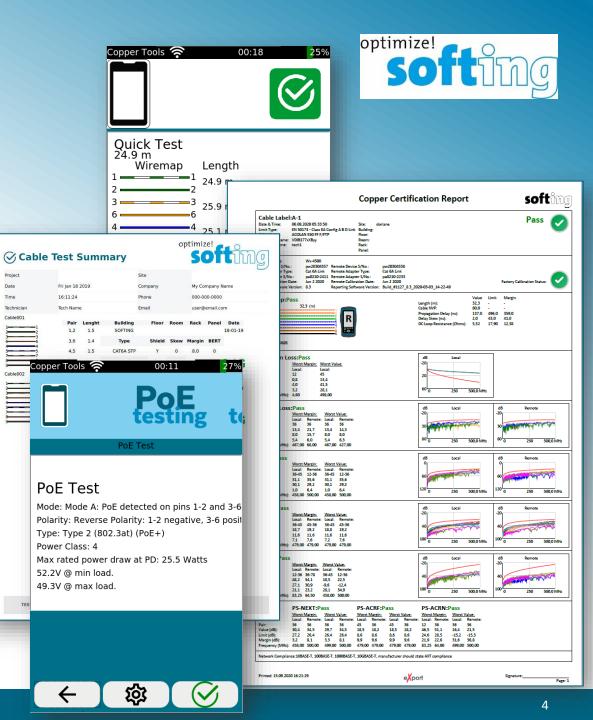
Primary


Campus, Between the buildings

Preferably implemented in FO (*Singlemode/Multimode*)

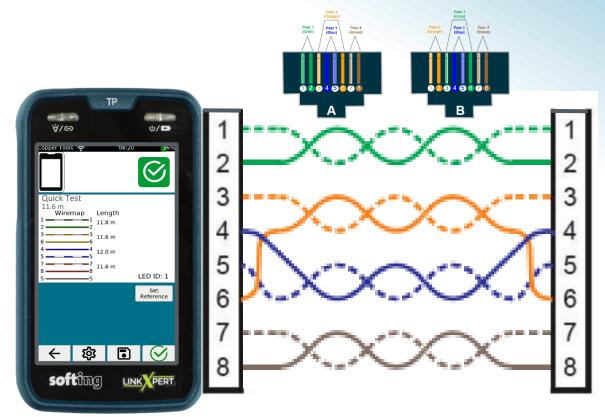
WiFi

Still: IEEE802.11n max. 600 MBit/s New: IEEE802.11ax 5-10 Gb/s



LAN Test and measurement types

- Verification
 - Basic test of the cabling
 - Check for correct wiring ۰
- Qualification
 - Determining the transmission capabilities of data links
- Certification
 - Acceptance measurements of networks
 - Assessment against standards ۲
 - Different link definitions
 - Number of LF/HF measurement and calculated parameters

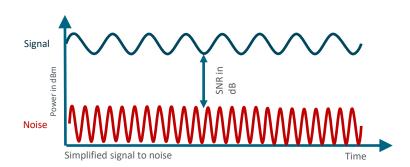

Active/troubleshooting

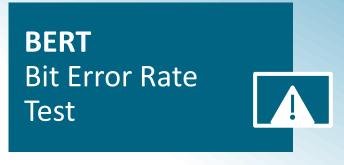
- Typical Ethernet problems
- Standardized transmission test, e.g. RFC 2544, EtherSAM
- Special testers for troubleshooting or functions included in verifier or qualifier

Tim

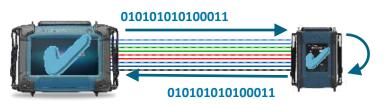
Verifying Copper cables

- Advanced Pro versions provide in addition Network testing features:
 - Switch speed, PoE measurement
 - DHCP, Ping, Traceroute, Network Map, Duplicate IPs, MAC spoof, Switch LED blink, CDP & LLDP port discovery and Reporting



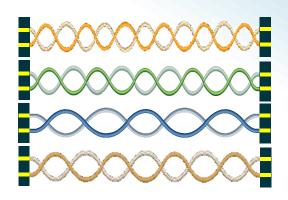

Basic PRO Wire mapper With screen backlight **LED Wire mapper**

Qualifying Copper cables


SNR Signal-to-Noise Ratio

- The ratio of Signal to Noise power
- If the signal power becomes too low and the noise power is too high, data cannot be detected by the receiver.

- 'Try and Error' principle
- Load generation from 1 GBit/s (Standard Application)
 2.5 and 5 Gbit/s (WiFi APs)
 10 Gbit/s (Cat.6A/Class E_A)
 with simultaneous checking for transmission errors.



Delay Skew

- Difference in signal propagation time between the pairs
- If the delay is too high, data packets cannot be recovered by the recipient.

Important factors to consider

- Replaceable RJ45 ports, as PoE measurements kills connections
 - PoE / PoE+ / PoE++ up to 90W burns connections mostly when disconnecting
- All tests with a single port
- Open source SFP's (MSA Multi Source Agreement)
- End-to-end testing

optimize

6

2 SFP Ports 1 – 10 Gbit/s

Replaceable RJ45 port

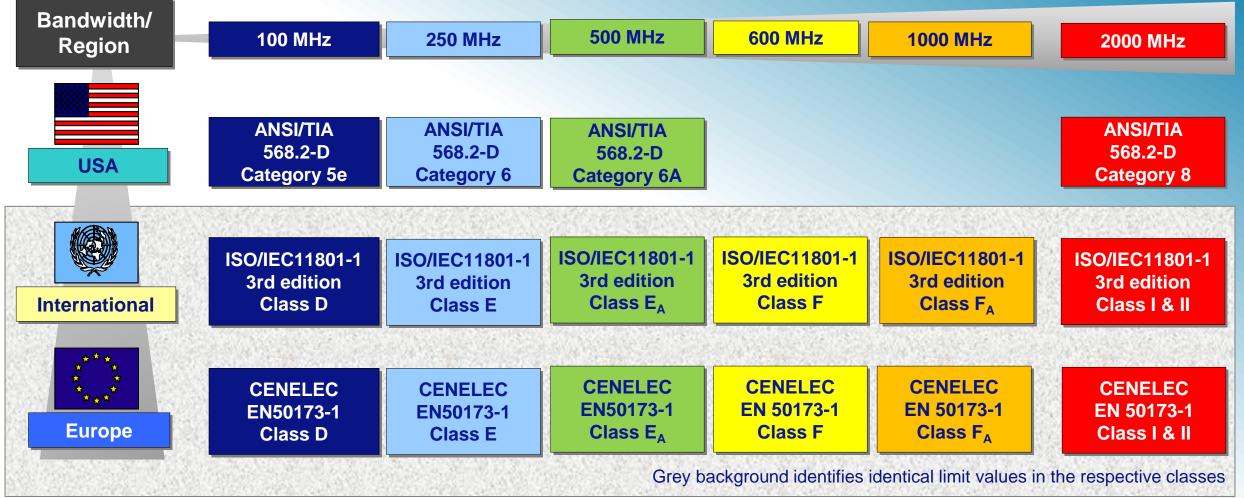
Connect/disconnect zone

Permanent contact zone

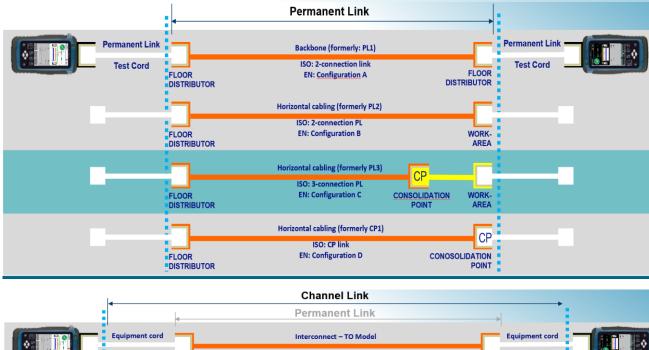
Certifying Copper cables

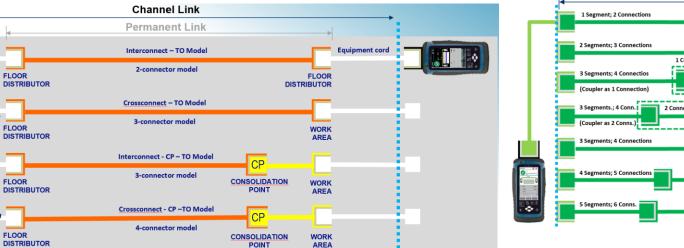
- Standardized acceptance measurement of networks
 - The electrical properties of a data link are determined by means of low and high frequency measurements and calculations based on the measured values
- Standards
 - The adherence to specified limit values of a performance class guarantees the problem-free transmission of a wide range of applications
- Link definitions
 - A distinction is made between installation and transmission paths, E2E and MPTL paths
 - Number of connectors may vary

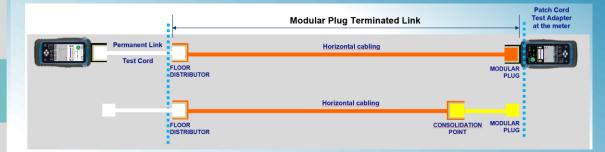
Copper Networks Standards

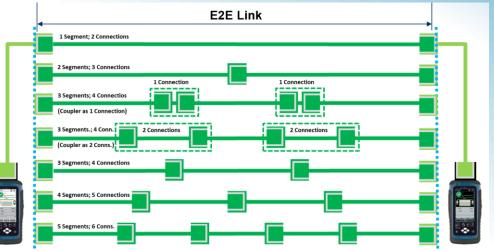


TA)	Cable	Components	Cabling	Installation	Testing	Application
	ANSI/TIA 568.2-D	ANSI/TIA 568.2-D	ANSI/TIA 568.2-D		ANSI/TIA 1152-A	IEEE (e.g. 802.3) Ethernet
International	IEC 61156	IEC 60603-7	ISO/IEC11801-1		IEC 61935-1	Fast Ethernet Gigabit Ethernet
Europe	EN 50288-1 Basic specification 50288-2 Cat 5 shielded 50288-3 Cat 5 unshielded 50288-4 Cat 7 shielded 50288-5 Cat 6 shielded 50288-6 Cat 6 unshielded 50288-7 Control cable 50288-8 Type 1 Cable up to 2 MHz 50288-8 Type 1 Cable up to 2 MHz 50288-9 Cat 7A shielded 50288-10 Cat 6A shielded 50288-11 Cat 6A unshielded 50288-12 Cat 8 shielded	EN 60603-7 RJ45 unshielded 60603-7-1 RJ45 shielded 60603-7-2 Cat 5 unshielded 60603-7-3 Cat 5 shielded 60603-7-4 Cat 6 unshielded 60603-7-41 Cat 6A unshielded 60603-7-5 Cat 6 shielded 60603-7-51 Cat 6A shielded 60603-7-7 Cat 7 shielded 60603-7-71 Cat 7 shielded 60603-7-71 Cat 7 shielded 60603-7-81/82 (E) "Cat 8" shielded (61076-3-104 TERA)	EN 50173-1 General 50173-2 Office 50173-3 Industry 50173-4 Homes 50173-5 Data Center 50173-6 Distributed building services	EN 50174-1 Installation Specs/ Quality assurance 50174-2 Planning/ Installations in buildings 50174-3 Planning/ Installations Outdoors	11801-9901: "40G" -9902: "End-to-e -9903: "Modelin -9904: "2.5 / 5 G -9905: "25 GBE" Draft -9906: SPE to 60 Draft -9907: Direct At Draft -9908 High Spee	TR" (Techriftenet) end link" og" GBE" ' (30m) D0 MHz tach


Certification


Copper Cabling Systems - Testing Standards




Link definitions (ISO 11801-1 & EN 50173-1)

FLOOR

FLOOR

FLOOR

FLOOR

CROSS

CONNECT

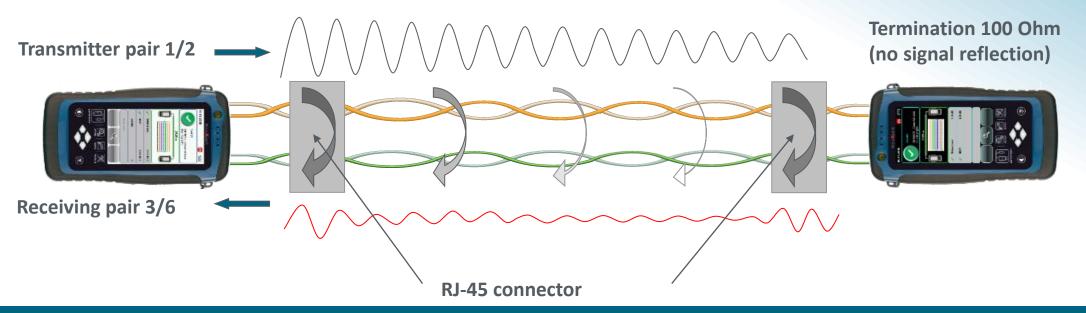
Patch cord

or jumper

CROSS

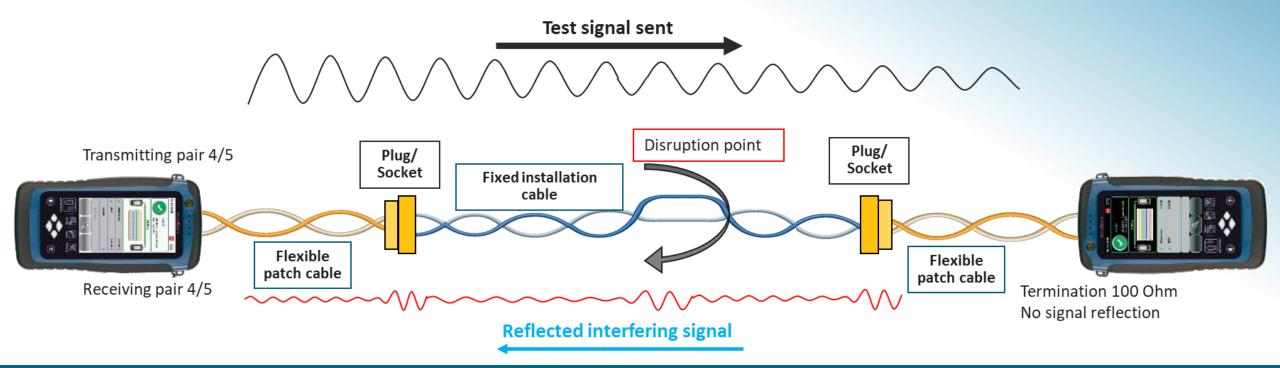
CONNECT

Cable certification parameters



Dominant Element / Type of Parameter	Installation Quality	Cable	Components	Matching of Cable & Components	Optional Parameters
LF Parameters	Wire-map	Propagation Delay			Direct Current (DC) Resistance Unbalance
	Direct Current (DC) Loop Resistance				within a pair / between pairs
RF Parameters		Insertion Loss (IL)	Pair-to-pair Near End Crosstalk (NEXT)	Return Loss (RL)	Unbalance attenuation, near end (TCL)
			Far End Crosstalk (FEXT)		Unbalance attenuation, far end (ELTCTL)
			(not reported)		Coupling Attenuation (CA)
					Alien Near End Crosstalk (ANEXT) (not reported)
					Alien Far End Crosstalk (AFEXT) (not reported)
Calculated Parameters		Length (informative in ISO/IEC)	Power Sum Near End Crosstalk (PS NEXT)	Pair-to-pair Attenuation- Crosstalk-Ratio @ Near End (ACR-N)	Power Sum Alien Near End Crostalk (PS ANEXT)
	28-03-2017	Delay Skew		Pair-to-pair Attenuation- Crosstalk-Ratio @ Far End (ACR-F)	Average Power Sum Alien Near End Crostalk (PSANEXT _{avg})
	Rack 1 / Panel B / Dose TIA - Cat SA Permanent V Wremsp J Length & Delay 24.30 m) V			Power Sum Attenuation- Crosstalk-Ratio @ Near End (PS ACR-N)	Power Sum Attenuation-Alien Crosstalk- Ratio @ Far End (PS AACR-F)
	✓ Insertion Loss 30.7040) ✓ Return Loss 6.5040) ✓ MEXT 7.2040) ✓ ACRF 9.9040) ✓ PSNEXT 6.5040)			Power Sum Attenuation- Crosstalk-Ratio @ Far End (PS ACR-F)	Average Power Sum Attenuation-Alien Crosstalk-Ratio @ Far End (PS AACR-F _{avg})

NEXT (Near End Cross Talk)


- Good isolation between pairs & Good quality components => Good (low) NEXT
- NEXT is the electromagnetic coupling (induction) from wire pair to wire pair.
- This is called near-end crosstalk, because the measurement is made at the same end where the power is fed in.
- (Too) high crosstalk makes it difficult or impossible to correctly recognize the signal at receiver side.
- NEXT measurement usually only affects 30-40m into the cable.
- In order to be able to detect errors at the end, measuring devices are required at both ends.

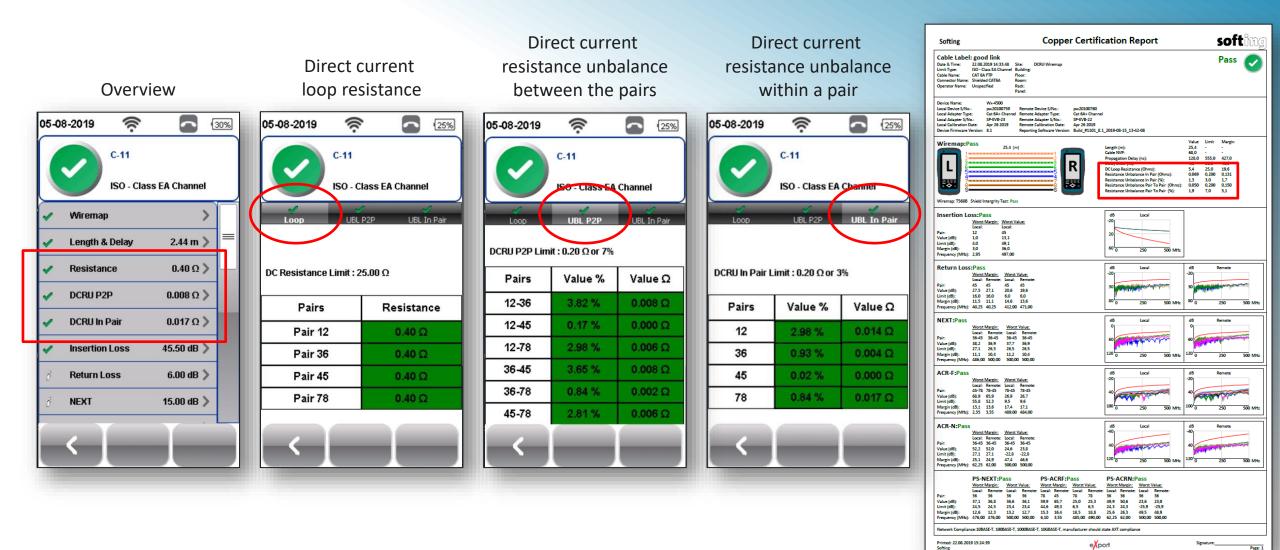
Return Loss

- High Return Loss typically => Possible Components impedance mismatch or damage on the cable
- Measure of the uniformity of the impedance on a transmission path
- Determination of the signal reflection due to impedance changes
- Reflected signals disturb the transmission

Copyright © 2022 Softing IT Networks. All rights reserved.

DC loop Resistance

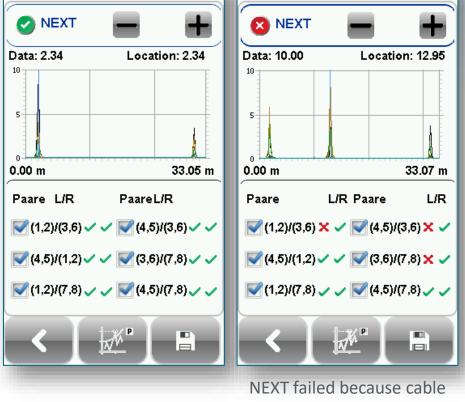
- Good contact in the crimping at both ends of the cable => Good (low) Resistance
- Determination of the DC loop resistance of each pair of wires
 - Limit values must be observed
 - Resistance delta between the pairs is determined
- As low and symmetrical resistance values as possible are important to
 - Power over Ethernet (remote power supply of active components, e.g. surveillance cameras, telephones, terminals, etc.)
 - to generate as little power loss as possible
- DC Resistance values are a measure of the uniformity of contact and should therefore be in the same dimension for each pair of wires, i.e. the smallest possible delta Ω


14-09-2020	•
	A-2
	EN 50173 - Class EA Config A B D Link

DC Resistance Limit : 17.90 Ohms

Pairs	Resistance
Pair 12	4.90 Ohms
Pair 36	4.80 Ohms
Pair 45	4.70 Ohms
Pair 78	4.80 Ohms
Δ	0.20 Ohms
$\left[\leftarrow \right]$	

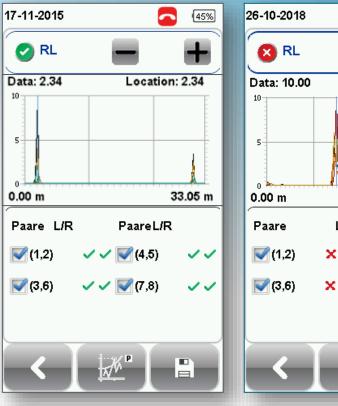
DCRU – DC Resistance Unbalanced

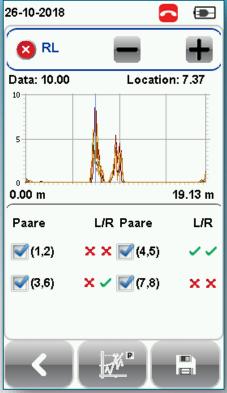


Copyright © 2022 Softing IT Networks. All rights reserved.

Fault locator

28-10-2015




03-07-2017

50%

NEXT failed because cable was "patched" after approx. 13m with luster terminal

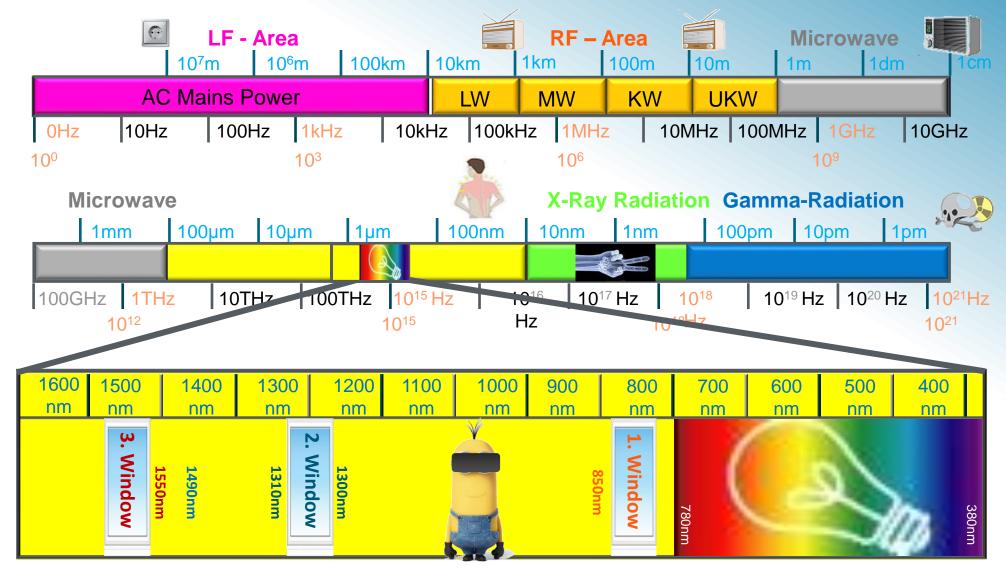
90%

Return Loss failed because cable was run over and crushed by forklift truck after approx. 7m

Cable certification - Faults overview

Fault in Parameter	Unit	Value	Possible Causes of Faults	Hints using Certifier
Wiremap	graphical representation	T568A/B	Opens, Shorts, Crossovers	Reliable localization important
DC Resistance	Ohms	preferable low, all pairs similar values	Cables too long, wrong cable type, bad IDC connection, defective components, mended cable	
Length	m (ft)	in "ft" or "m" (informative only in ISO/IEC)	cable too long, wrong NVP value, defective cable	Ensure proper NVP value
Delay	ns (nano seconds)	preferable low, all pairs similar values	cable too long, defective cable	Used to determine length value
Delay Skew	ns (nano seconds)	preferable low	cable too long, defective cable	
Insertion Loss	dB over Frequency	preferable low, all pairs similar course	cable too long, bad termination, wrong cable type, defective cable	
NEXT (Near End Crosstalk)	dB over Frequency	preferable high	Twist opened too much, Pair Screen insufficient, wrong or insufficient components or cables, worn out test cords or adapters	NEXT Locator Function important, Short Link compensation in ISO/IEC (4dB rule)
Return Loss	dB over Frequency	preferable high	Overstreched installation cable, defective cable, impedance mismatch between components	RL Locator Function important, Low Frequency compensation (3dB rule)
ACR-N	dB over Frequency	preferable high	NEXT and/or Insertion Loss	Calculated parameter based on NEXT and Insertion Loss
ACR-F (formerly ELFEXT)	dB over Frequency	preferable high	Crosstalk and/or Insertion Loss	Calculated parameter based on FEXT and Insertion Loss
PS-NEXT, PS-ACR-N, PS-ACR-F	dB over Frequency	preferable high	refer to basic parameters	Summing up of individual pair values of basic parameters

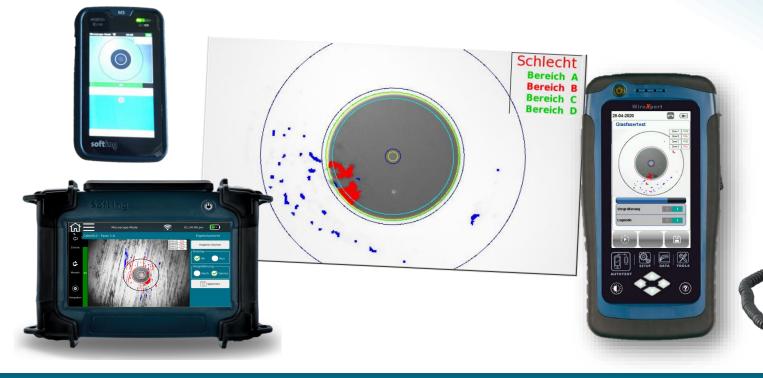
LAN - Fiber cable testing



Fiber (LAN & WAN):

- LAN & WAN Networks Multimode & Singlemode
- Tier 1 Power Loss + Length (some standards don't require Length)
- Tier 2 Power Loss + Length + Reflectometry (OTDR)

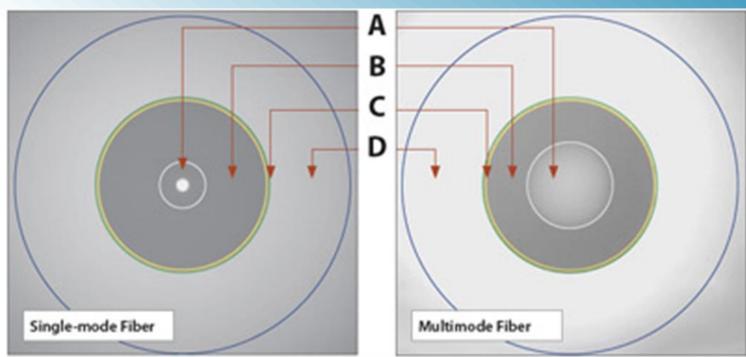
Electro Magnetic Spectrum


Structure of a Fiber Optic connector

Inspection and cleaning of connector end faces

- Dirt is the biggest enemy in the FO area!
 - Clean the connector end faces before each measurement or connection!
 - Only use suitable cleaning tools!
 - Lint-free wipes, Cleaning liquids (water based), Special cleaning pencils
 - Use Video Probe to inspect the end face! Not a microscope
 - Remove protective caps on connectors only for Taes/patching

Fiber pert OTDR 500


The JEC C1200 2 25 standard sleave

When is a connector endface "clean"?

- The IEC 61300-3-35 standard clearly defines when a connector is "clean"
 - Classification of individual evaluation zones radially around the fibre core
 - Differentiation between multimode and singlemode

Zones	Description	Radius	Radius
		SM	MM
Α	Core	0 μm to (15) 25 μm	0 μm to 65 μm
В	Cladding	(15) 25 μm to 115 μm	65 μm to 115 μm
С	Adhesive	115 μm to 135 μm	115 μm to 135 μm
D	Contact	135 μm to 250 μm	135 μm to 250 μm

Standardized cleaning methods

- Suitable cleaning methods are defined in International Standards
- IEC TR 62627-01:2016

•

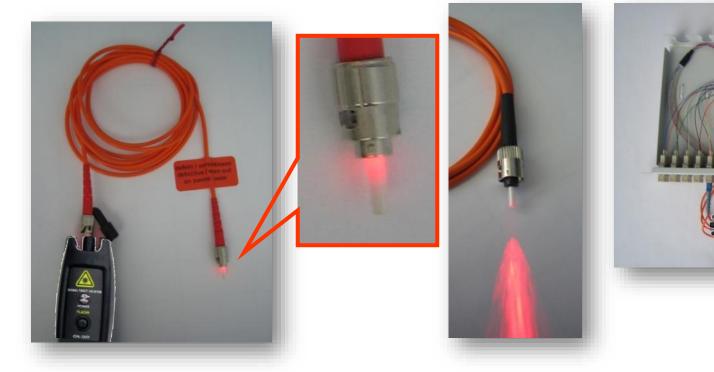
- Fibre optic interconnecting devices and passive components Part 01: Fibre optic connector cleaning methods
 - Influence of dirt on connector end surfaces
 - General handling of optical connectors
 - Importance of dust caps
 - Various tools and aids for the correct cleaning of connector end surfaces
 - Cleaning procedures
- DIN IEC/TR 62572-4:2013-09
 - Fibre optic active components and devices Reliability standards Part 4: Guideline for optical connector endface cleaning methods for receptacle style optical transceivers
 - Details on the handling of optical transceivers in socket design
 - Internal structure of optical transceivers
 - Information about cleaning tools and machines
 - Suitable cleaning procedures and cleaning processes

Typical cleaning tools

Fiber - Test and measurement types 3 Softing

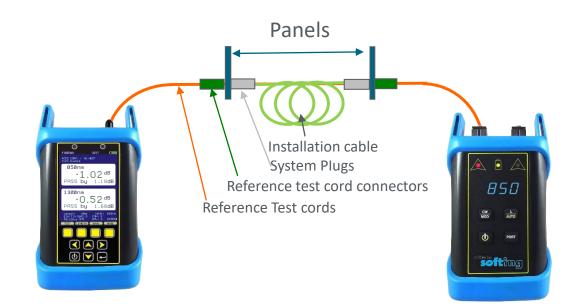
- Fibre continuity test
- Qualification test

- Loss measurement
 - Standalone Optical Loss Test Systems (OLTS) •
 - Integrated modules for LAN certifiers


Continuity test – VFL Visual Fault Liocator

- Allocation and detection of mechanical defects by means of visible laser red light
 - Find end of fiber
 - Find breaks in the fiber or connectors, etc.

JDSL



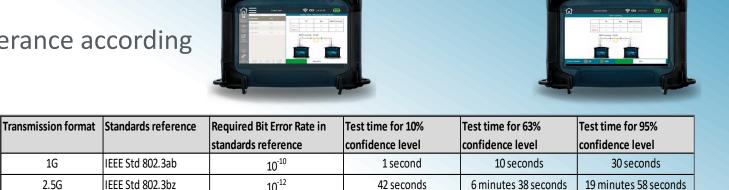
Power Loss Measurement – Apples to apples

Pass/Fail results & Tier 1 Certification

Loss budget	MM @850nm	MM @ 1300nm	SM @ 1310/1550nm
Overall length = 100m	0,1 x 3,50 dB	0,1 x 1,50 dB	0,1 x 1,00 dB
Test cord attenuations (2 reference cords)	2 x 0,30 dB	2 x 0,30 dB	2 x 0,50 dB
Total Loss Budget	0,95 dB	0,75 dB	1,1 dB

Test report details:

- Specification of the Link tested
- Test device used, type and manufacturer
- Serial number and calibration status of the tester
- Nominal wavelengths tested
- Fiber core diameter (50μm, 62.5μm, 9μm)
- Fiber Type (OM1, OM2, OM3, OM4, OM5, OS1, OS2)
- Connector type (SC, ST, LC, FC or other)
- Measurement result with measurement direction (A>>E, E>>A)
- Limits
- route designation
- Test Date
- Name of operator


Messprotoko

Qualification - Testing against application

- Qualification test types for fiber optic links
 - BERT (Bit Error Rate Test) or Packet Error Rate Test
 - Sending of real physical layer data packets and analysis of transmission errors
 - Evaluation based on Ethernet fault tolerance according to IEEE 802.3
 - E.g. 1 Gigabit Ethernet: no bit in 10s Data transmission may be lost
 - Determination of Optical Loss
 - Reading registers of SFP modules
 - Real time detection -> LiveLight
 - Fiber Video Probe
 - Inspection and assessment of the connector end faces according to IEC 61300-3-35

21 seconds

11 seconds

3 minutes 19 seconds

1 minute 39 seconds

10⁻¹²

10⁻¹²

IEEE Std 802.3bz

IEEE Std 802.3an

5G

10G

9 minutes 59 seconds

5 minutes 0 seconds

Certifying against Standards

- Normative foundations
 - Limit values of the cabling are defined ...
 - Application-neutral
 - ISO/IEC 11801 or EN 50173-1
 - TIA-568.3-D

Connector (mated)

		Maximu	m attenuation [dB]	Return Loss [dB]		
		Random	Reference	Reference	Random	Reference
Quality of Con	nector	against	against	against	against	against
		Random	Random	Reference	Random	Reference
Multimode Singlemode		0.75	0.3 (ISO/IEC) 0.5 (ANSI/TIA)	0.1	20	35
<u> </u>	РС	0.75	0.5	0.2	35	45
	APC		0.5	0.2	55	60

Splice

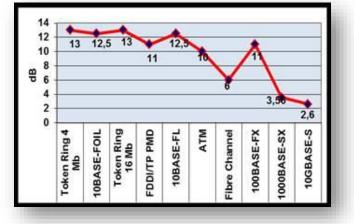
	Maximum attenuation [dB]	Return Loss [dB]
Multimode	0.3	20
Singlemode	0.3	35

FO from ISO/IEC 11801-1

Optical waveguide - Type - based on IEC (EN) 60793-2	Category of used optical fibre waveguide	Maximum cabled optical fibre attenuation (dB/km)			
Multimode					
		850 nm	953 nm	1300 nm	
62,5/125 μm Multimode IEC (EN) 60793-2-10 A1b	OM1	3,5		1,5	
50/125 μm Multimode IEC (EN) 60793-2-10 A1a.1	OM2	3,5		1,5	
50/125 μm Multimode IEC (EN) 60793-2-10 A1a.2	OM3	3,5		1,5	
50/125 μm Multimode IEC (EN) 60793-2-10 A1a.3	OM4	3,5		1,5	
50/125 μm Multimode IEC (EN) 60793-2-10 A1a.4	OM5	3,0		1,5	
Singlemode		1			
				1550 nm	
9/125 μm Singlemode IEC (EN) 60793-2-50 B1.1	OS1			1.0	
9/125 μm Singlemode IEC (EN) 60793-2-50 B1.3/B6_a	OS1a				
9/125 μm Singlemode IEC (EN) 60793-2-50 B1.3/B6 a	OS2				

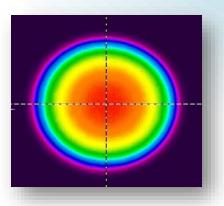
Fiber cable certification - Methods

- Two measuring levels (tiers):
 - "Tier 1" LSPM
 - Light source and power meter (LSPM)
 - Loss
 - Length (not always required, depending on standard)



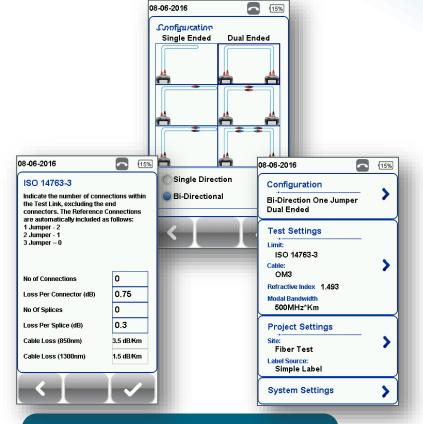
- "Tier 2" LSPM & OTDR
 - Optical time domain reflectometer (OTDR)
 - OTDR trace
 - Connector end faces

The allowed attenuation budgets of the applications are becoming smaller and smaller!



- Causes for (large) uncertainties
 - Poor quality test cords/adapters
 - Undefined test signal
 - Uncalibrated instruments

- Remedies
 - Compliance with the relevant Regulations, e.g. IEC 14763-3
 - Use high-quality components and test cords
 - Defined test signals
 - EF (Encircled Flux) Compliance
 - Regular factory calibration of the measuring equipment



Copyright © 2023 Softing IT Networks. All rights reserved.

Tier 1 – Certifier GUI

Configuration

- Reference method
- Loopback or Loop
- Uni-/bidirectional
- Number of connectors and splices
- Cable parameters / Standard

Connect the Reference Cords as

above & Proceed to Set

15%

08-06-2016

850 nm

1300 nm

Set Reference

Absolute

L-R

-18.06 dBm

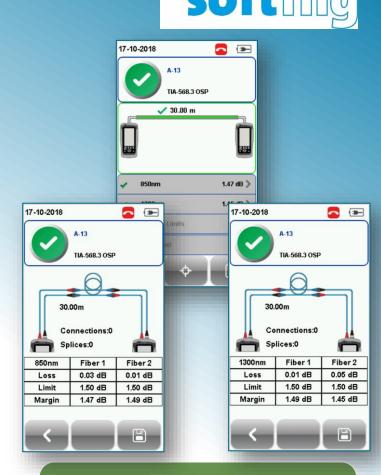
-20.29 dBm -20.22 dBm

15%

Absolute

R-L

-18.96 dBm

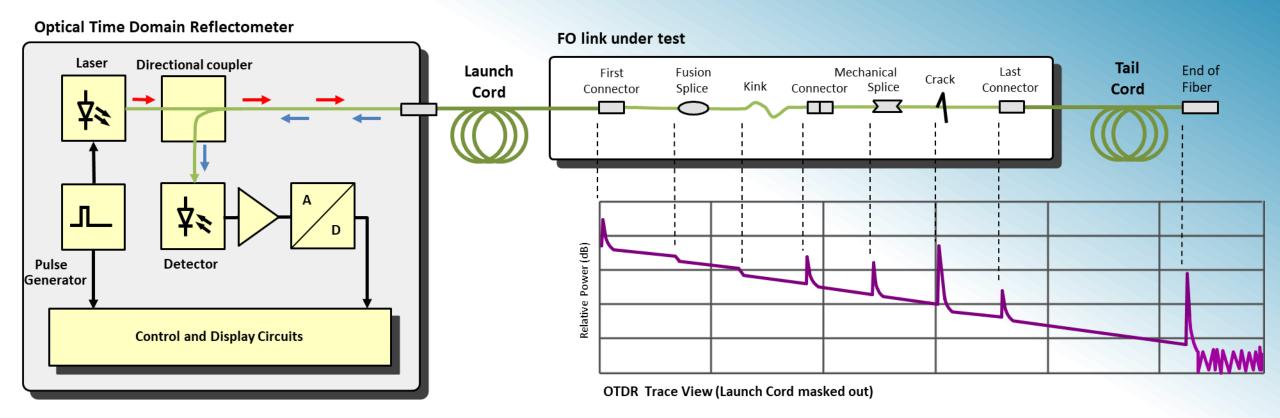

08-06-2016

Reference

Set Reference

Set Reference

- Screens depending on selected reference method
- Results as control values for measuring modules


optimize!

Measurement

- Number of measurement results depending on configuration
- Pass/Fail depending on calculated limit values and/or selected fiber application(s)

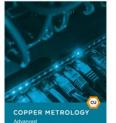
Tier 2 - How does an OTDR work?

WiFi Networks

	Wi-Fi generations						
	Wi-Fi 4	Wi-Fi 5	Wi-Fi 6	Wi-Fi 6E	Wi-Fi 7 (expected)		
Launch date	2007	2013	2019	2021	2024		
IEEE standard	802.11n	802.11ac	802.	11ax	802.11be		
Max data rate	1.2 Gbps	3.5 Gbps	9.6 0	9.6 Gbps			
Bands	2.4 GHz and 5 GHz	5 GHz	2.4 GHz and 5 GHz	6 GHz	1–7.25 GHz (including 2.4 GHz, 5 GHz, 6 GHz bands)		
Security	WPA 2	WPA 2	WP	A 3	WPA3		
Channel size	20, 40 MHz	20, 40, 80, 80+80, 160 MHz	20, 40, 80, 80+80, 160 MHz	20, 40, 80, 80+80, 160 MHz	Up to 320 MHz		
Modulation	64-QAM OFDM	256-QAM OFDM	1024-QAM OFDMA		4096-QAM OFDMA (with extensions)		
мімо	4x4 MIMO	4x4 MIMO, DL MU-MIMO	8x8 UL/DL	MU-MIMO	16x16 MU- MIMO		

Source: IEEE, Intel Corporation, Wi-Fi Alliance

Education & Training



Home > Online seminars

All free online seminars at a glance

Find out about current topics in the field of IT network technology directly from your home office or in the office. Here you will find online seminars on all aspects of testing, qualifying and certifying cabling in IT systems. Register now for our free online seminars. If you need a consultation after the online seminar or need technical support, then you have the **option of booking a free consultation** directly.

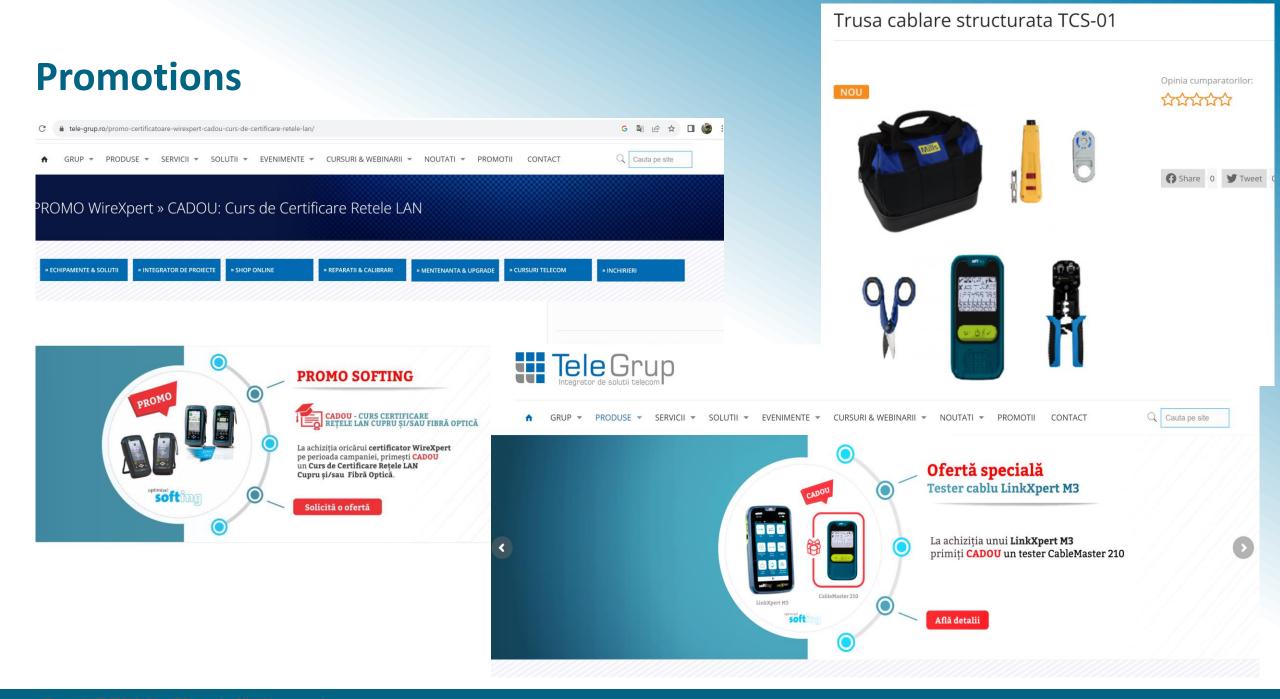
CO FO MEASUREMENT

For beginners

T 10 GIGABIT ETHERNET For beginners

Curs certificare retele LAN cupru » NICE-C

In cadrul cursului NICE-C (Network Infrastructure Certified Expert - Copper) va veti familiariza cu elementele de baza ale cablarii structurate si tehnologia de masurare a cablurilor de cupru. Veti obtine o imagine de ansamblu asupra modului in care sa certificati reteaua testata si sa evaluati rezultatele obtinute.



In cadrul cursului NICE-F (Network Infrastructure Certified Expert - Fiber) va veti familiariza cu elementele de baza ale cablarii structurate si tehnologia de masurare a fibrei optice. Veti obtine o imagine de ansamblu asupra modului in care sa certificati reteaua testata si sa evaluati rezultatele obtinute.

Vezi Detali

Digital Library Softing IT

Catalogs

Webinars

Blogs

News & Services

Alejandro Hume International Sales EMEA

Mobile: +49 171 2740057 Email: <u>alejandro.hume@softing.com</u>

